Untukpersamaan gradiennya adalah sebagai berikut. Tentukan persamaan garis lurus yang melalui titik pusat ( 0 , 0 ) dan bergradien 2 ! Persamaan Garis Lurus Yang Melewati Dua Titik De Eka ( 0 , c ) adalah titik potong sumbu y. Persamaan garis lurus yang melalui. Cara menentukan persamaan garis lurus bergantung pada informasi Persamaangaris yang melalui titik dan sejajar garis y = mx + c adalah . Oleh karena itu, kita tentukan terlebih dahulu gradien garis y = 2x + 4, yaitu m = 2. Persamaan garis lurus yang melalui titik (2, 1) dan sejajar dengan garis y = 2x + 4 adalah Garislurus yang tegak lurus dengan garis garis 2x + y - 3 = 0 mempunyai gradien m2 ,maka: m 1 . m 2 = -1. -2 . m 2 = -1. m 2 = Β½. Persamaan garis lurus yang melalui (-2,1) dan mempunyai gradien = Β½. y - y 1 = m (x - x 1) y - 1 = Β½ (x + 2) 2y -2 = x + 2. x - 2y + 4 = 0. Dα»‹ch Vα»₯ Hα»— Trợ Vay Tiền Nhanh 1s. Ilustrasi oleh Persamaan garis lurus adalah suatu perbandingan antara koordinat y dan koordinat x dari dua titik yang terletak pada sebuah garis. Sedangkan garis lurus sendiri yaitu kumpulan dari titik – titik yang sejajar dan garis lurus dapat dinyatakan dalam berbagai bentuk. Beberapa contoh penerapan persamaan garis misalnya seperti penghitungan sistem persamaan linear dua variable dengan menggunakan grafik menggunakan konsep persamaan garis lurus, percobaan pelemparan bola yang membentuk kurva persamaan kuadrat, dan mobil yang melewati lintasan berbentuk lingkaran persamaan lingkaran. Dibawah ini beberapa contoh untuk menyatakan persamaan garis lurus, yaitu y = mxy = -mxy = ax = aax + by = abax – by = -abdan lain-lain Bentuk Umum Persamaan Garis LurusPengertian GradienRumus Persamaan Garis LurusContoh Soal dan Pembahasan Bentuk Umum Persamaan Garis Lurus Bentuk umum persamaan garis lurus yaitu ax + by + c = 0. Persamaan garis lurus dapat dilukis dalam koordinat kartesius. Kemudian cara untuk menentukan persamaan garis dari suatu grafik pada koordinat kartesius, perhatikan gambar berikut Pada grafik di atas terdapat garis lurus yang melalui koordinat 0, 4 dan 2, 0. Persamaan garis melalui dua titik dirumuskan dengan Misalkan x1, y1 = 0, 4 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1y – 4/0 – 4 = x – 0/2 – 0y – 4/-4 = x/22y – 4 = – 4x2y – 8 = -4x4x + 2y – 8 = 0 Persamaan garis tersebut dapat disederhanakan menjadi 2x + y – 4 = 0. Keterangan x, y variabelx1, y1; x2, y2 titik-titik yang dilalui oleh garis Cara cepat menentukan persamaan garis yaitu Mengalikan absis titik potong sumbu-x dengan y serta mengalikan ordinat titik potong sumbu-y dengan x dengan hasil merupakan perkalian absis titik potong sumbu-x dengan ordinat titik potong sumbu-y. Misalkan pada gambar di atas titik potong sumbu-x dan sumbu-y yaitu 2,0 dan 0, 4 sehingga menjadi 4x + 2y = 8 Jika kedua ruas dikurangi 8 diperoleh 4x + 2y – 8 = 0 dapat disederhanakan menjadi 2x + y – 4 = 0. Pengertian Gradien Gradien yaitu Perbandingan komponen y dan komponen x , atau disebut juga dengan kecondongan sebuah garis. Lambang dari suatu gradien yaitu huruf β€œm”. Gradien juga dapat dinyatakan sebagai nilai dari kemiringan suatu garis dan dapat dinyatakan dengan perbandingan Ξ”y/Ξ”x Perhatikan gambar dibawah ini untuk menentukan gradien pada sebuah persamaan garis berikut Berikut ini rumus mencari gradien garis dengan beberapa jenis persamaan Gradien dari persamaan ax + by + c = 0 Gradien yang melalui titik pusat 0 , 0 dan titik a , b m = b/a m = b/a Gradien Yang melalui titik x1 , y 1 dan x2 , y2 m = y1 – y2 / x1 – x2 atau m = y2 – y1 / x2 – x1 Gradien garis yang saling sejajar / / m = sama atau jika dilambangkan adalah m1 = m2 Gradien garis yang saling tegak lurus lawan dan kebalikan m = -1 atau m1 x m2 = -1 Rumus Persamaan Garis Lurus 1. Persamaan Garis Lurus bentuk umum y = mx Persamaan yang melalui titik pusat 0 , 0 dan bergradien m . Contoh Tentukan persamaan garis lurus yang melalui titik pusat 0 , 0 dan bergradien 2 ! Jawab y = mx y = 2 x 2. y = mx + c Persamaan garis yang / / dengan y = mx dan bergradien m Persamaan garis yang melalui titik 0 , c dan bergradien m. 0 , c adalah titik potong sumbu y . 3. Persamaan Garis Lurus Yang Melalui titik x1 , y1 dan bergradien m persamaannya yaitu y – y1 = m x – x1 4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu x1 , y 1 dan x2 , y2 . Contoh Soal dan Pembahasan Persamaan garis yang melalui titik 3, 1 dan 2, 0 adalah Pembahasan Misalkan x1, y1 = 3, 1 dan x2, y2 = 2, 0 y – y1/y2 – y1 = x – x1/x2 – x1 y – 1/0 – 1 = x – 3/2 – 3 y – 1/-1 = x – 3/-1 -1y – 1 = -1 x – 3 -y + 1 = -x + 3 x – y – 2 = 0 Jawaban x – y – 2 = 0 2. Tentukan Gradien garis yang melalui titik 0 , 0 dengan titik A -20 , 25 ? Pembahasan Diketahui Titik 0 , 0 Titik A -20 , 25 Ditanya m = . . .? Jawab m = b / a = 25 / -20 = – 5/4 3. Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5 ? Pembahasan Diketahui Titik pusat koordinat 0 , 0 m = -4/5 Ditanya Persamaan garis lurus = . . .? Jawab y = mxy = -4 / 5 x-4y = 5x-4y -5y = 0 4y + 5y = 0 4. Persamaan garis lurus yang melalui titik 0 , -2 dan m = 3/4 adalah . . .? Pembahasan Diketahui Titik garis 0 , -2 m = 3 / 4 Ditanya Persamaan garis = . . .? Jawab Cara 1y = mx + cy = 3/4 x + -2 x4 4y = 3x – 8 -3x + 4y + 8 = 0 Cara 2y – y1 = m x – x1 y – -2 = 3/4 x – 0 y + 2 = 3/4 x x4 4y + 8 = 3x -3y + 4y + 8 5. Tentukan persamaan garis Z yang melalui titik 4 , 5 dan -5 , 3 ? Pembahasan Diketahui Titik A 4 , 5 Titik B -5 , 3 Ditanya Persamaan garis Z = . . .? Jawab Cara 1Langkah pertama yaitu mencari gradien terlebih dahulu m = y1 – y2 / x1 – x2m = 5 – 3 / 4 – -5 m = 2 / 9 Selanjutnya yaitu memasukkan ke dalam rumus Persamaan garis melalui titik 4 , 5 dan bergradien 2 / 9y – y1 = m x – x1 y – 5 = 2/9 x – 4 y – 5 = 2/9x – 8/ 9y = 2/9 x – 8 / 9 + 5y = 2/9 x – 8/9 + 45 /9y = 2/9x – 37 / 9 Cara 2Tanpa mencari gradien, yaitu dengan cara y – 5 / 3 – 5 = x – 4 / -5 – 4y – 5 / -2 = x – 4 / -9-9 y – 5 = -2 x – 4 -9y + 45 = -2x + 8-9y + 2x +45 – 8 = 02x – 9y + 37 9 2/9 x – y + 37 / 9 y = 2/9x + 37 / 9 Itulah pembahasan tentang persamaan garis lurus, baik dari bentuk umum, rumus, contoh soal beserta pembahasannya. Semoga bermanfaat! Referensi Persamaan Garis Lurus Persamaan Garis Lurus & Singgung Pengertian, Rumus, dan Contoh Soal

persamaan garis lurus yang melalui